

Introduction to Medical Imaging Part I

Sabato Santaniello

Contributors: Dr. Brown, Dr. Kaputa, Dr. Kumavor,

Dr. Shin (UConn BME dept.)

What is "medical imaging"?

☐ Technique and process of creating visual representations (**images**) of the interior of a body, i.e., of internal structures that are hidden by the skin and bones

What is "medical imaging"?

- ☐ Technique and process of creating visual representations (**images**) of the interior of a body, i.e., of internal structures that are hidden by the skin and bones
- ☐ It is used for sake of clinical analysis (e.g., to diagnose a disease) and medical intervention (e.g., to treat a disease)

What is "medical imaging"?

- ☐ Technique and process of creating visual representations (**images**) of the interior of a body, i.e., of internal structures that are hidden by the skin and bones
- ☐ It is used for sake of clinical analysis (e.g., to diagnose a disease) and medical intervention (e.g., to treat a disease)
- ☐ It is used to establish a database of normal anatomy and physiology to facilitate the identification of abnormalities

Goals of medical imaging

☐ Depending on the specific goal, two types of medical imaging are possible:

Goals of medical imaging

☐ Depending on the specific goal, two types of medical imaging are possible:

Functional Imaging

Goals of medical imaging

☐ Depending on the specific goal, two types of medical imaging are possible:

Functional Imaging

Goal: To visualize physiological processes in a living tissue (e.g., blood flow, oxygenation, etc.)

Goals of medical imaging

☐ Depending on the specific goal, two types of medical imaging are possible:

Structural Imaging

Goals of medical imaging

□ Depending on the specific goal, two types of medical imaging are possible:

Structural Imaging

Goal: To reconstruct the 3-D shape of an internal organ (e.g., to capture tumors, lesions, etc.)

Imaging modalities

☐ An **Imaging Modality** is the combination of type of probes and technologies used to acquire images of the body

Imaging modalities: signal

■ Modalities can be grouped according to the type of signal used to probe:

Signal	Imaging Modality
Electromagnetic waves	Radiography Thermography Computerized Tomography (CT) Magnetic Resonance Imaging (MRI) Positron Emission Tomography (PET) Single Photon Emission CT (SPECT)
Ultrasound waves	Doppler Echography Elastography

Imaging modalities: image formation

■ Modalities can also be grouped according to how the image is recreated:

Imaging modalities: image formation

■ Modalities can also be grouped according to how the image is recreated:

Reflection mode:

Detection Radiation System Source

The image is recreated based on the amount of signal reflected by the tissue of interest

Imaging modalities: image formation

■ Modalities can also be grouped according to how the image is recreated:

Transmission mode:

The image is recreated based on the amount of signal passing through the tissue of interest

How good is a medical image?

□ Different imaging modalities produce images of different quality

How good is a medical image?

- ☐ Different imaging modalities produce images of different quality
- One aspect that affects the choice of one modality over the others is the required image quality

How good is a medical image?

- □ Different imaging modalities produce images of different quality
- One aspect that affects the choice of one modality over the others is the required image quality

So, how do we define the **quality** of a medical image?

Quality of a medical image

Three parameters define the quality of a medical image:

Three parameters define the quality of a medical image:

1) Contrast

Quality of a medical image

Three parameters define the quality of a medical image:

 Contrast ⇒ It is the difference between the intensity (or color) of the image and its surrounding

Three parameters define the quality of a medical image:

 Contrast ⇒ It is the difference between the intensity (or color) of the image and its surrounding

Quality of a medical image

Three parameters define the quality of a medical image:

 Contrast ⇒ It is the difference between the intensity (or color) of the image and its surrounding

Three parameters define the quality of a medical image:

Image A has **less contrast** (i.e., lower difference in intensity with the surrounding) than image B

Quality of a medical image

Three parameters define the quality of a medical image:

Image B has **less contrast** (i.e., lower difference in color with the surrounding) than image A

Image A

Image B

Three parameters define the quality of a medical image:

2) Resolution

Quality of a medical image

Three parameters define the quality of a medical image:

2) Resolution ⇒ It is the ability to resolve any two adjacent points of an image

Three parameters define the quality of a medical image:

2) **Resolution** ⇒ It is the ability to resolve any two adjacent points of an image

It defines the **smallest possible** dimensions of a point that can be detected

Quality of a medical image

Three parameters define the quality of a medical image:

2) Resolution ⇒ It is the ability to resolve any two adjacent points of an image

Image A

Image B

Three parameters define the quality of a medical image:

Image A has **less resolution** (i.e., detectable points have larger dimensions) than image B

Image B

Quality of a medical image

Three parameters define the quality of a medical image:

3) Signal-to-noise ratio (SNR)

Three parameters define the quality of a medical image:

3) Signal-to-noise ratio (SNR)

Quality of a medical image

Three parameters define the quality of a medical image:

3) Signal-to-noise ratio (SNR) ⇒ It is the ratio between the image signal and the noise from the instrument

Three parameters define the quality of a medical image:

An estimation of the SNR is the ratio between the mean (μ_{sig}) and standard deviation (σ_{sig}) of the signal

$$SNR \cong \frac{\mu_{signal}}{\sigma_{signal}}$$

Quality of a medical image

Three parameters define the quality of a medical image:

In general, the SNR is expressed in **decibels** (dB), i.e., it is computed as:

$$SNR = 20 \log_{10} \left(\frac{\mu_{signal}}{\sigma_{signal}} \right) dB$$

Three parameters define the quality of a medical image:

Image A has **higher SNR** (i.e., the signal is much higher than the noise) than image B

Image B

Quality of a medical image

☐ The quality of a medical image is largely affected by the type of signal used

- ☐ The quality of a medical image is largely affected by the type of signal used
- ☐ To understand what aspect of the signal is relevant, let us revise the notions of electromagnetic and ultrasound waves

What is a wave?

☐ First, let us recall the notion of **oscillation**

☐ First, let us recall the notion of **oscillation**

An oscillation is the **repetitive variation**, typically in time, of some measure about a central value or between two different states

What is a wave?

☐ If we track the position of the free-moving end in time, we will see...

☐ Let us consider the vibration of a slinky due to vertical movements of the hand

source: https://www.youtube.com/watch?v=UHcse1jJAto

What is a wave?

□ Now the sinusoidal-like shape is in space,
 i.e., if we take a snapshot at a given time t
 we may see something like this figure

☐ Moreover, the sinusoidal-like shape travels from left to right despite the fact that the slinky does not move in the same direction

What is a wave?

☐ To obtain this, each particle of the slinky simply oscillates upward and downward...

☐ ... and in doing so, it pulls the particle next to it away from equilibrium (i.e., it transmits the oscillation)...

What is a wave?

□ ... and in doing so, it pulls the particle next to it away from equilibrium (i.e., it transmits the oscillation)...

... and this makes the sinusoidal-like signal travel through the slinky

What is a wave?

☐ This is an example of wave, i.e., a wave is a disturbance or oscillation that travels through matter or space accompanied by a transfer of energy

What is a wave? Two parameters characterize a wave:

- ☐ Two parameters characterize a wave:
 - **2) frequency** (*f*), i.e., the number of full cycles completed in one second

What is a wave?

- ☐ Two parameters characterize a wave:
 - 2) Denoted with *T* the period of a full oscillation of a generic particle, it is:

- ☐ Two parameters characterize a wave:
 - 2) Frequency f is measured in Hz, where 1Hz = 1 cycle/second

What is a wave?

☐ The speed with which a wave propagates through a medium results

$$v = \lambda \times f$$

□ Ultrasound waves

Waves in medical imaging

□ Ultrasound waves

Waves that propagate via air and tissue molecules colliding with their neighbors

□ Ultrasound waves

Waves that propagate via air and tissue molecules colliding with their neighbors

Frequency: $f \in [1, 10]$ MHz

Wavelength: $\lambda \in [0.1, 1]$ mm

 $M = mega, i.e., 10^6$

Waves in medical imaging

□ Electromagnetic waves

□ Electromagnetic waves

Waves that originate from the acceleration of charged particles and propagate at the speed of light

Waves in medical imaging

□ Electromagnetic waves

Waves that originate from the acceleration of charged particles and propagate at the speed of light

□ Electromagnetic waves

Waves that originate from the acceleration of charged particles and propagate at the speed of light

Wavelength and image quality

□ As a rule-of-thumb, if the wavelength of the probe signal increases...

Wavelength and image quality

- ☐ As a rule-of-thumb, if the wavelength of the probe signal increases...
 - ...Resolution decreases
 - ...Contrast decreases
 - ...SNR is non-trivially related to the wavelength

