UCONN

Introduction to Biomechanics Part I

ENGR 1166 Biomedical Engineering

What is "biomechanics"?

 It applies principles from classical mechanics to the study of living systems

What is "biomechanics"?

- It applies principles from classical mechanics to the study of living systems
- $\hfill\square$ It combines Engineering and Life Sciences

Biomechanics	
Mechanics	

Biomechanics	
Mechanics	
The study of the behavior of physical bodies when subjected to forces or displacements	

Biomechanics
Mechanics
→ Rigid Body Mechanics No deformation under applied forces
Deformable Body Mechanics Deformation under applied forces
Fluid Mechanics Study of the movement of liquids and gases

Biomechanics: key concepts	
Mechanics	
The study of the behavior of physical bodies when subjected to forces or displacements	

L

Biomechanics: key concepts
Mechanics
The study of the behavior of physical bodies when subjected to forces or displacements
□Force ^{def} An interaction that tends to change the motion of an object with mass
□Mass ≝ Property of matter causing resistance to changes in motion
□Matter ^{def} Substance that occupies space

Newton's laws of motion

First Law

A body at rest will remain at rest; a body in motion will move in a straight line with constant velocity (no change in speed or direction) unless a net external force acts upon it

$$\sum_{i} \vec{F}_{i} = \mathbf{0}$$

Second Law

A change in net force produces an **acceleration** in the direction of the applied force with a magnitude in proportion to the force (**mass**)

 $\sum_{i} \vec{F}_{i} = m\vec{a}$

Newton's laws of motion

 \bigcirc

Third Law

When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body

Newton's laws of motion

Third Law

When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body

Newton's laws of motion

Third Law

When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body

0

Principle of transmissibility

The conditions of equilibrium or motion of a rigid body will remain unchanged if a force acting at a given point of the rigid body is replaced by a force of the same amplitude, direction, and line of action, but acting at a different point

 \vec{F}_1

An important assumption...

Newton's laws are applied to objects which are idealized as **single point masses**, i.e., the size and shape of the object's own body can be neglected

An important assumption...

Newton's laws are applied to objects which are idealized as **single point masses**, i.e., the size and shape of the object's own body can be neglected

This assumption holds when the object is **small** compared to the distances involved in its analysis, or the deformation and rotation of the body are of no importance