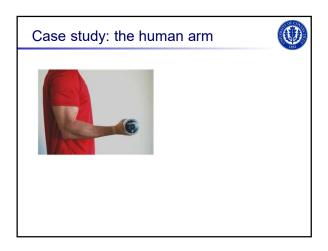
UCONN

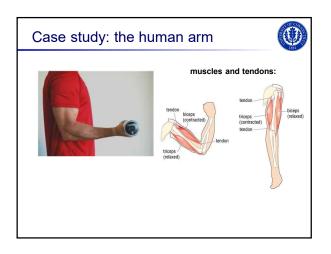
Forces, Moments, and Free Body Diagrams (Part II)

ENGR 1166 Biomedical Engineering

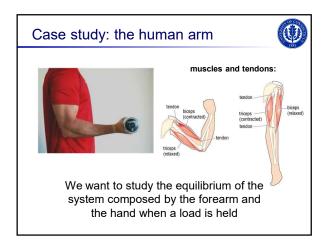
Recap

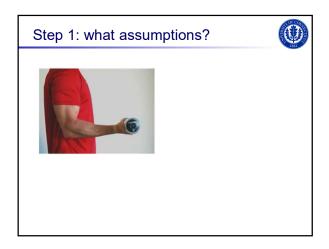


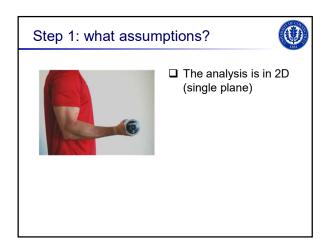
A rigid body is **in equilibrium** if (1) the resultant of all the forces acting on the body is zero and (2) the resultant of all the moments about a given point *A* on the body is zero

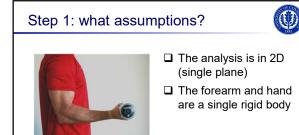

$$\sum_{i} \vec{F}_{i} = \mathbf{0}; \quad \sum_{i} \vec{\tau}_{i,A} = \mathbf{0}$$

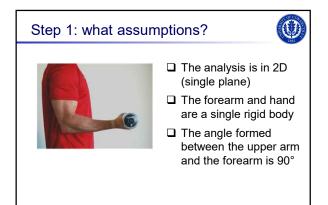
Recap

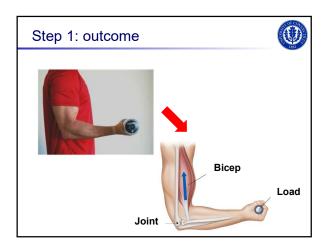

- 0
- A free body diagram (FBD) is a pictorial device to analyze the forces and moments acting on a body
- The body may consist of many components, each one acting as a single body. If so, a whole series of FBDs may be necessary
- In a FBD, constraints are replaced by arrows representing the forces and moments they generate



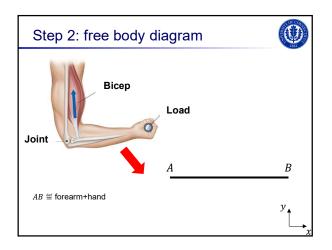


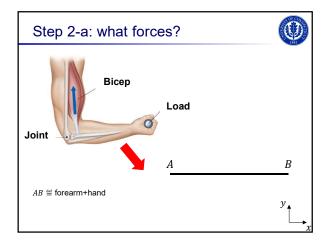


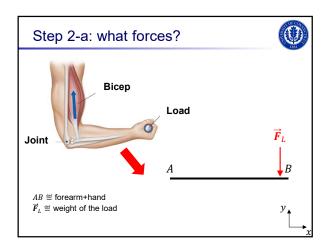


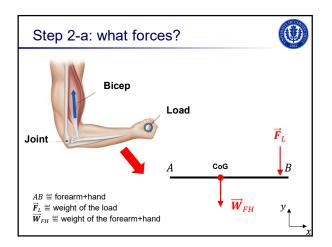


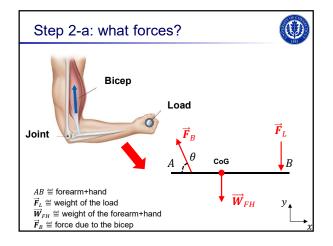
- The analysis is in 2D (single plane)
- The forearm and hand are a single rigid body
- The angle formed between the upper arm and the forearm is 90°
- □ The load is applied at the midpoint of the hand

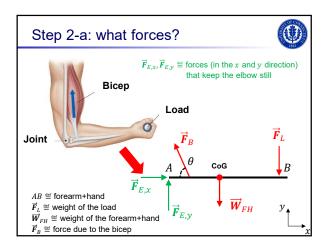

Step 1: what assumptions?

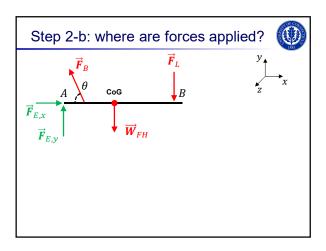

- The analysis is in 2D (single plane)
- □ The forearm and hand are a single rigid body
- The angle formed between the upper arm and the forearm is 90°
- $\hfill\square$ The load is applied at the midpoint of the hand
- Only the Bicep muscle is considered

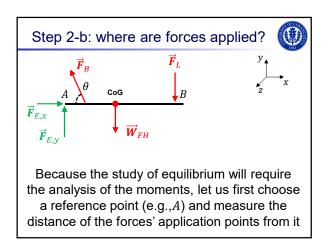




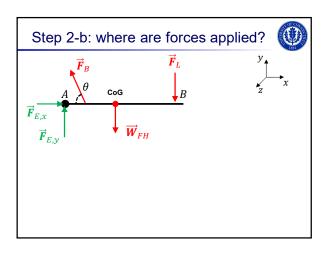




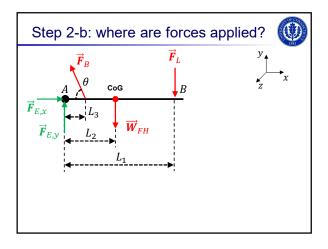


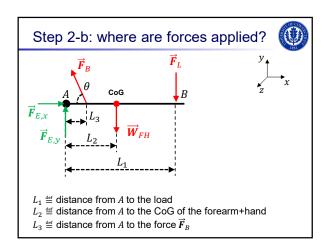


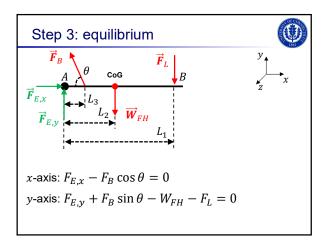
A note on forces $\vec{F}_{E,x}$, $\vec{F}_{E,y}$

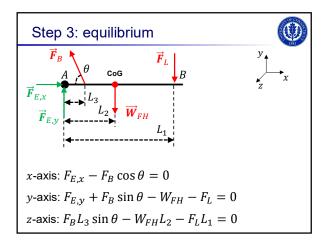


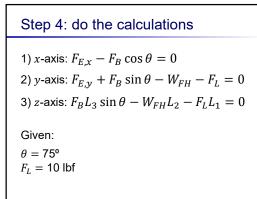
- Include forces experienced between segments at the articulating surfaces
- Include the effect of muscle contraction (e.g., compressive, possibly shear and torsional forces)
- Cannot be directly measured. Hence, we measure them indirectly by using both kinematic and anthropometric data

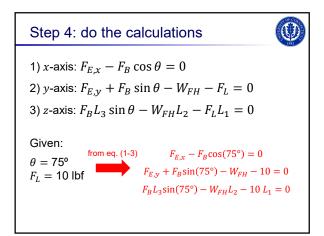


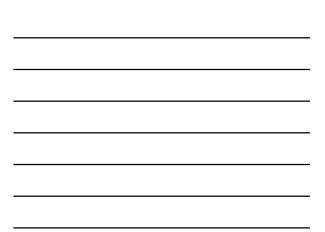






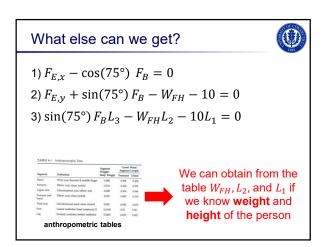


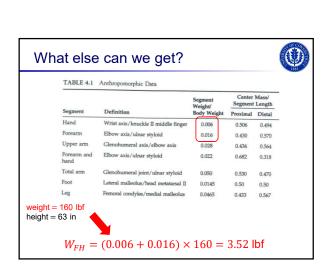




1) x-axis: $F_{E,x} - F_B \cos \theta = 0$ 2) y-axis: $F_{E,y} + F_B \sin \theta - W_{FH} - F_L = 0$ 3) z-axis: $F_B L_3 \sin \theta - W_{FH} L_2 - F_L L_1 = 0$ \bigcirc

U

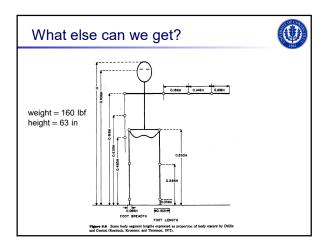


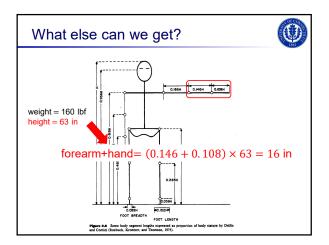

What else can we get?

1) $F_{E,x} - \cos(75^\circ) F_B = 0$ 2) $F_{E,y} + \sin(75^\circ) F_B - W_{FH} - 10 = 0$ 3) $\sin(75^\circ) F_B L_3 - W_{FH} L_2 - 10L_1 = 0$ \bigcirc



	Anthropomorphic Data Segment			ter Mass/ ent Length	
Segment	Definition	Weight/ Body Weight	Proximal		
Hand	Wrist axis/knuckle II middle finger	0.006	0.506	0.494	
Forearm	Elbow axis/ulnar styloid	0.016	0.430	0.570	
Upper arm	Glenohumeral axis/elbow axis	0.028	0.436	0.564	
Forearm and hand	Elbow axis/ulnar styloid	0.022	0.682	0.318	
Total arm	Glenohumeral joint/ulnar styloid	0.050	0.530	0.470	
Foot	Lateral malleolus/head metatarsal II	0.0145	0.50	0.50	
Leg	Femoral condyles/medial malleolus	0.0465	0.433	0.567	


TABLE 4.1	Anthropomorphic Data			
		Segment Weight/	Center Segment	
Segment	Definition	Body Weight	Proximal	Distal
Hand	Wrist axis/knuckle II middle finger	0.006	0.506	0.494
Forearm	Elbow axis/ulnar styloid	0.016	0.430	0.570
Upper arm	Glenohumeral axis/elbow axis	0.028	0.436	0.564
Forearm and hand	Elbow axis/ulnar styloid	0.022	0.682	0.318
Total arm	Glenohumeral joint/ulnar styloid	0.050	0.530	0.470
Foot	Lateral malleolus/head metatarsal II	0.0145	0.50	0.50
Leg	Femoral condyles/medial malleolus	0.0465	0.433	0.567



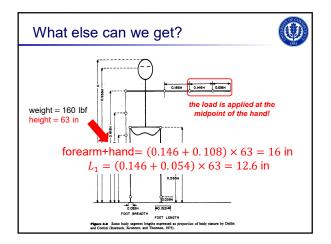
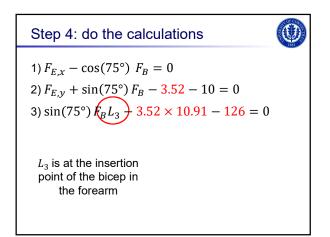
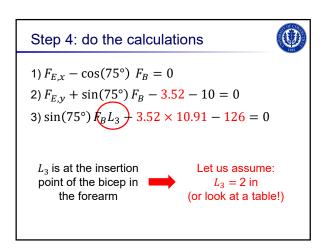
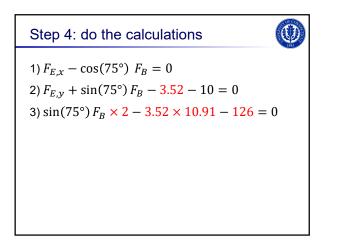


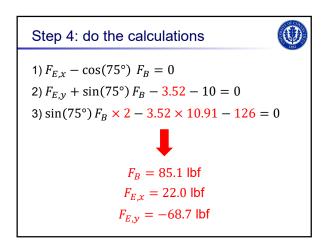


TABLE 4.1	TABLE 4.1 Anthropomorphic Data			
		Segment Weight/	Center Mass/ Segment Length	
Segment	Definition	Body Weight	Proximal	Distal
Hand	Wrist axis/knuckle II middle finger	0.006	0.506	0.494
Forearm	Elbow axis/ulnar styloid	0.016	0.430	0.570
Upper arm	Glenohumeral axis/elbow axis	0.028	0.436	0.564
Forearm and hand	Elbow axis/ulnar styloid	0.022	0.682	0.318
Total arm	Glenohumeral joint/ulnar styloid	0.050	we me	asure
Foot	Lateral malleolus/head metatarsal II	0.0145	from the	elbow!
Leg	Femoral condyles/medial malleolus	0.0465	0.433	0.567

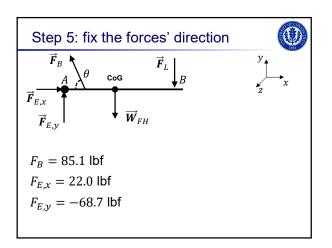

Step 4: do the calculations

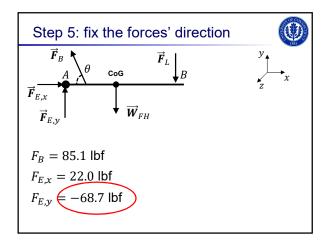

1) $F_{E,x} - \cos(75^\circ) F_B = 0$ 2) $F_{E,y} + \sin(75^\circ) F_B - W_{FH} - 10 = 0$ 3) $\sin(75^\circ) F_B L_3 - W_{FH} L_2 - 10 L_1 = 0$


Step 4: do the calculations


0


1) $F_{E,x} - \cos(75^\circ) F_B = 0$ 2) $F_{E,y} + \sin(75^\circ) F_B - 3.52 - 10 = 0$ 3) $\sin(75^\circ) F_B L_3 - 3.52 \times 10.91 - 126 = 0$





Step 5: fix the forces' direction	
$\vec{F}_{B,x} \rightarrow \theta \vec{F}_{L} \rightarrow B$ $\vec{F}_{E,x} \rightarrow \vec{F}_{E,y} \rightarrow \vec{W}_{FH}$	y z x
$F_B = 85.1 \text{ lbf}$ $F_{E,x} = 22.0 \text{ lbf}$ $F_{E,y} \in 68.7 \text{ lbf}$	

