## Biomechanical Modeling and Analysis

ENGR 1166 Biomedical Engineering

Recap



A rigid body is **in equilibrium** if (1) the resultant of all the forces acting on the body is zero and (2) the resultant of all the moments about a given point *A* on the body is zero

$$\sum_{i} \vec{F}_{i} = \mathbf{0}; \quad \sum_{i} \vec{\tau}_{i,A} = \mathbf{0}$$

#### Recap



- A free body diagram (FBD) is a pictorial device to analyze the forces and moments acting on a body
- The body may consist of many components, each one acting as a single body. If so, a whole series of FBDs may be necessary
- In a FBD, constraints are replaced by arrows representing the forces and moments they generate

#### Today we focus on...

 A free body diagram (FBD) is a pictorial device to analyze the forces and moments acting on a body

 $\bigcirc$ 

- The body may consist of many components, each one acting as a single body. If so, a whole series of FBDs may be necessary
- In a FBD, constraints are replaced by arrows representing the forces and moments they generate























□ The simplest and most adopted link system is the stick man









Key points of the segmental analysis (



With regard to the case study, we will follow these rules:

1) Break the body into rigid body segments (stick man representation)

## Key points of the segmental analysis



With regard to the case study, we will follow these rules:

- 1) Break the body into rigid body segments (stick man representation)
- 2) Analyze each segment using a FBD

## Key points of the segmental analysis

With regard to the case study, we will follow these rules:

- 1) Break the body into rigid body segments (stick man representation)
- 2) Analyze each segment using a FBD
- 3) At the intersection of two segments, the forces in the first segment are equal in magnitude and opposite in direction to the forces in the adjoining segment

#### Key points of the segmental analysis 🕔

With regard to the case study, we will follow these rules:

4) At the intersection of two segments, the moment in the first segment also occurs in the adjoining segment

### Key points of the segmental analysis

With regard to the case study, we will follow these rules:

- 4) At the intersection of two segments, the moment in the first segment also occurs in the adjoining segment
- 5) Reduce the number of equations by using substitution

# Key points of the segmental analysis

With regard to the case study, we will follow these rules:

- At the intersection of two segments, the moment in the first segment also occurs in the adjoining segment
- 5) Reduce the number of equations by using substitution
- 6) Solve the equations by replacing variables with quantitative values



#### Step 1: what assumptions?



The system is in equilibrium

□The analysis is in 2D

□We want to study the load at the base of the trunk

















































































































What we have so far  

$$F_{S,y} - 2W_a - F_L = 0$$

$$-F_L L_a \sin \theta_1 - 2W_a L_1 \sin \theta_1 + M_t = 0$$

$$-F_{S,y} + F_{H,y} - W_t = 0$$

$$-F_{S,y} L_t \sin \theta_2 - W_t L_2 \sin \theta_2 - M_t + M_l = 0$$

$$-F_{H,y} + F_{F,y} - 2W_l = 0$$

$$M_f = M_l$$

What we have so far
$$F_{S,y} - 2W_a - F_L = 0$$
 $-F_L L_a \sin \theta_1 - 2W_a L_1 \sin \theta_1 + M_t = 0$  $-F_{S,y} + F_{H,y} - W_t = 0$  $-F_{S,y} L_t \sin \theta_2 - W_t L_2 \sin \theta_2 - M_t + M_l = 0$  $-F_{H,y} + F_{F,y} - 2W_l = 0$  $M_f = M_l$ Variables to solve for: $F_{S,y} M_t F_{H,y} M_l F_{F,y}$ 

$$F_{S,y} - 2W_a - F_L = 0$$
  
-F\_L L\_a sin \theta\_1 - 2W\_a L\_1 sin \theta\_1 + M\_t = 0  
-F\_{S,y} + F\_{H,y} - W\_t = 0  
-F\_{S,y} L\_t sin \theta\_2 - W\_t L\_2 sin \theta\_2 - M\_t + M\_l = 0  
-F\_{H,y} + F\_{F,y} - 2W\_l = 0

 $M_f = M_l$ 

Reducing the number of equations  

$$F_{S,y} - 2W_a - F_L = 0$$

$$-F_L L_a \sin \theta_1 - 2W_a L_1 \sin \theta_1 + M_t = 0$$

$$-F_{S,y} + F_{H,y} - W_t = 0$$

$$-F_{S,y} L_t \sin \theta_2 - W_t L_2 \sin \theta_2 - M_t + M_l = 0$$

$$-F_{H,y} + F_{F,y} - 2W_l = 0$$

$$M_f = M_l$$

$$\begin{aligned} & -F_{L}L_{a}\sin\theta_{1} - 2W_{a}L_{1}\sin\theta_{1} + M_{t} = 0 \\ & -(2W_{a} + F_{L}) + F_{H,y} - W_{t} = 0 \\ & -(2W_{a} + F_{L})L_{t}\sin\theta_{2} - W_{t}L_{2}\sin\theta_{2} - M_{t} + M_{l} = 0 \\ & -F_{H,y} + F_{F,y} - 2W_{l} = 0 \end{aligned}$$

$$M_{f} = M_{l}$$

$$F_{S,y} = 2W_{a} + F_{L}$$

Reducing the number of equations  

$$\begin{array}{l}
-F_L L_a \sin \theta_1 - 2W_a L_1 \sin \theta_1 + M_t = 0 \\
-(2W_a + F_L) + F_{H,y} - W_t = 0 \\
-(2W_a + F_L) L_t \sin \theta_2 - W_t L_2 \sin \theta_2 - M_t + M_l = 0 \\
-F_{H,y} + F_{F,y} - 2W_l = 0
\end{array}$$

$$\begin{array}{l}
M_f = M_l \\
F_{S,y} = 2W_a + F_L
\end{array}$$

#### Reducing the number of equations

$$-F_L L_a \sin \theta_1 - 2W_a L_1 \sin \theta_1 + M_t = 0$$
$$-(2W_a + F_L) + F_{H,y} - W_t = 0$$
$$-(2W_a + F_L)L_t \sin \theta_2 - W_t L_2 \sin \theta_2 - M_t + M_l = 0$$
$$M_f = M_l$$
$$F_{S,y} = 2W_a + F_L$$
$$F_{F,y} = F_{H,y} + 2W_l$$

$$\begin{split} -F_L L_a \sin \theta_1 - 2W_a L_1 \sin \theta_1 + M_t &= 0\\ -(2W_a + F_L) + F_{H,y} - W_t &= 0\\ -(2W_a + F_L) L_t \sin \theta_2 - W_t L_2 \sin \theta_2 - M_t + M_l &= 0\\ & & & & & \\ Given:\\ M_f &= M_l & & & & F_L = 10 \text{ lbf}\\ F_{S,y} &= 2W_a + F_L & & & & & \\ \text{subject's weight} &= 160 \text{ lbf}\\ subject's height &= 72 \text{ in}\\ F_{F,y} &= F_{H,y} + 2W_l \end{split}$$















 $-26 \times 20.7 \sin \theta_2 - 79.5 \times 10.4 \sin \theta_2 - M_t + M_l = 0$   $M_f = M_l$ 

 $F_{S,y} = 2 \times 8 + 10 = 26$  $F_{F,y} = F_{H,y} + 2 \times 7.4$ 

21

Step 4: do the calculations  

$$-317 \sin \theta_1 - 268.6 \sin \theta_1 + M_t = 0$$

$$-538.2 \sin \theta_2 - 824.3 \sin \theta_2 - M_t + M_l = 0$$

$$M_f = M_l$$

$$F_{S,y} = 26 \text{ lbf}$$

$$F_{H,y} = 105.5 \text{ lbf}$$

$$F_{F,y} = 120.3 \text{ lbf}$$

















$$\begin{split} M_f &= M_l \\ F_{S,y} &= 26 \text{ lbf} \\ F_{H,y} &= 105.5 \text{ lbf} \\ F_{F,y} &= 120.3 \text{ lbf} \end{split}$$



















