UCONN

Introduction to Bioelectricity Part II

ENGR 1166 Biomedical Engineering

Recap

- Electric current is the flow of electrically charged particles through a medium. It is measured in Ampere (A)
- Voltage is the work required to move a unit charge between two points (+) and (-). It is measured in Volt (V)
- A resistor is a circuit element opposing the current by producing a voltage drop between the terminals

- □ A **node** is any point on a circuit where two or more circuit elements meet
- Two nodes are different if their voltages are different

What KCL tells us...

Current cannot be lost as it flows around the circuit: net charge cannot accumulate within the circuit

- Any current that enters one terminal of a circuit element must exit at the other terminal of the element
- Current can only flow in a **closed circuit**

KCL: example 2

KCL at node A: $-I_C + I_1 + I_3 = 0$ KCL at node B: $-I_3 - I_S + I_4 = 0$ KCL at node C: $-I_2 - I_4 + I_C = 0$ Ohm's law: $V_2 = R_2I_2$ 0

 \bigcirc

KVL: example

KVL at path 1: $V_1 + V_2 - V_S = \mathbf{0}$ KCL at node A: $-I_1 - I_C + I_2 = \mathbf{0}$ Ohm's law: $V_1 = R_1I_1$; $V_2 = R_2I_2$

Using KCL/KVL in problem solving

- Identify unknowns
- Label each current and assign a direction to it. Then, identify the polarity of each voltage
- $\hfill\square$ Choose the nodes and closed paths
- Apply KCL to nodes and KVL to closed paths. Remember: the number of independent equations must match the number of unknown
- □ Solve the equations

Resistance in electronic components

Band Color	Digit	Multiplier	Tolerance
Black	0	1	
Brown	1	10	±1%
Red	2	100	±2%
Orange	3	1,000	±3%
Yellow	4	10,000	±4%
Green	5	100,000	
Blue	6	1,000,000	
Violet	7	10,000,000	
Gray	8	100,000,000	1000
White	9		
Gold		0.1	±5%
Silver		0.01	±10%
None			±20%

Resistors are made as small electronic components

The resistance of the component is reported on the case by using bands of different color (color code)

Res	sistan	ce in e	electro	onic components
Band Color	Digit	Multiplier	Tolerance	□ The resistance is
Black	0	1		read as:
Brown	1	10	±1%	$D = ab \times 10^{\circ} \cap$
Red	2	100	±2%	$R = ab \times 10^{5} \Omega$
Orange	3	1,000	±3%	
Yellow	4	10,000	±4%	
Green	5	100,000		
Blue	6	1,000,000		
Violet	7	10,000,000		
Gray	8	100,000,000		AAA N
White	9	-		a'/1
Gold		0.1	±5%	h d
Silver		0.01	±10%	^D C
None			±20%	-

