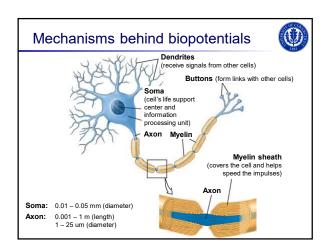
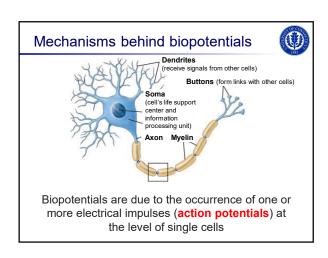


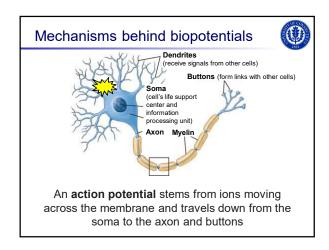
Introduction to Biopotentials Part I

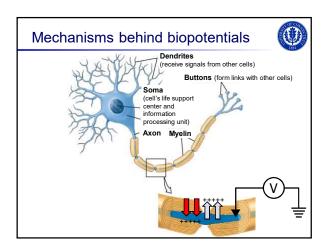
ENGR 1166 Biomedical Engineering

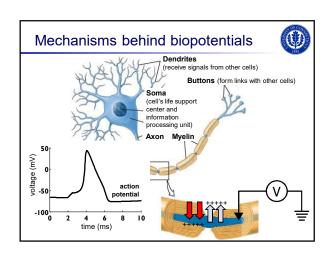
An intuition of "biopotentials" Source: http://www.youtube.com/watch?v=8FoUMo8KLQ&playnost=1&list=PL&DSE18D5963BBF0C&feature=results_main

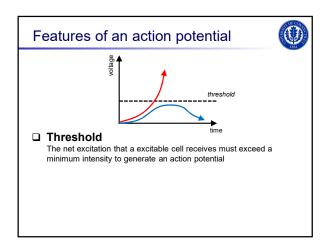

Biopotentials

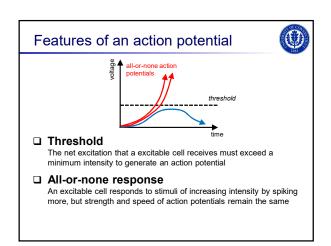


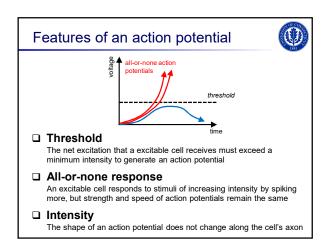

□ An electric voltage that is measured between points in a living cell, tissue, or organism, and which accompanies all biochemical processes

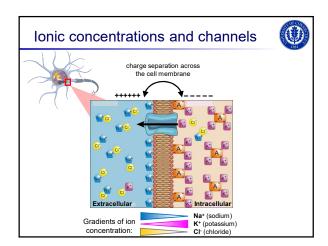

Biopotentials An electric voltage that is measured between points in a living cell, tissue, or organism, and which accompanies all biochemical processes Biopotentials allows organs and muscles to communicate with each other


Muscles

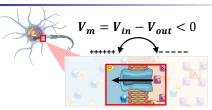




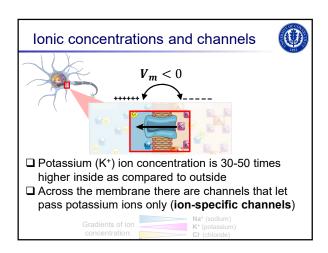


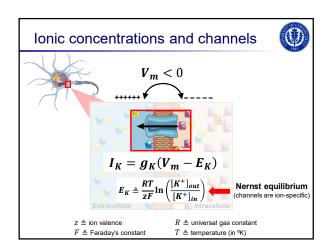


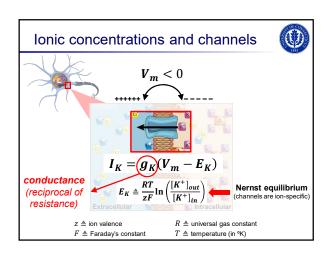
Ionic concentrations and channels

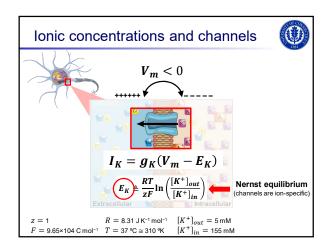


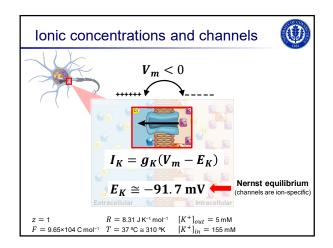
To understand the mechanisms of an action potential let us first look at what happens across the cell's membrane

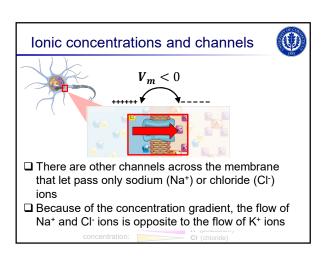

Ionic concentrations and channels

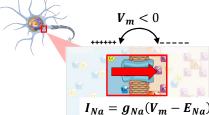




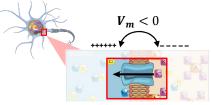

- ☐ The inside of a cell is always more negative than the outside
- \Box The transmembrane voltage V_m at rest is typically between –100 mV and –60 mV


	Na+ (sodium)
radients of ion	K+ (potassiun
	CI- (chloride)





Ionic concentrations and channels


$$I_{Na} = g_{Na}(V_m - E_{Na})$$

$$I_{Cl} = g_{Cl}(V_m - E_{Cl})$$

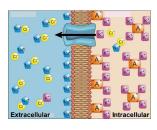
$$E_{N\alpha} = \frac{RT}{zF} \ln \left(\frac{[N\alpha^+]_{out}}{[N\alpha^+]_{in}} \right) \cong +69 \text{ mV} \qquad E_{Cl} = \frac{RT}{zF} \ln \left(\frac{[Cl^-]_{out}}{[Cl^-]_{in}} \right) \cong -91 \text{ mV}$$

Goldman-Hodgkin-Katz equilibrium

If nothing perturbs the cell, the sum of the ionic currents will eventually reaches zero (**equilibrium**). This happens when V_{m} reaches the value

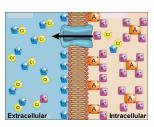
This happens when
$$V_m$$
 reaches the value
$$V_m = E \stackrel{\text{def}}{=} \frac{RT}{F} \ln \left(\frac{p_K[K^+]_{out} + p_{Na}[Na^+]_{out} + p_{Cl}[Cl^-]_{in}}{p_K[K^+]_{in} + p_{Na}[Na^+]_{in} + p_{Cl}[Cl^-]_{out}} \right)$$

Goldman-Hodgkin-Katz equilibrium

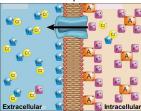

$$\boldsymbol{V_m} = \boldsymbol{E} \stackrel{\text{def}}{=} \frac{RT}{F} \ln \left(\frac{p_K[K^+]_{out} + p_{Na}[Na^+]_{out} + p_{Cl}[Cl^-]_{in}}{p_K[K^+]_{in} + p_{Na}[Na^+]_{in} + p_{Cl}[Cl^-]_{out}} \right)$$

- ☐ *E* is called Goldman-Hodgkin-Katz (GHK) equilibrium. It is approximately –85 mV

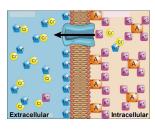
K-Na active pump


The fact that $I_{Na}+I_K+I_{Cl}=\mathbf{0}$ at GHK equilibrium does not mean that each ionic current is zero

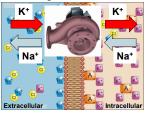
K-Na active pump


There is still a flow of Na⁺, K⁺, and Cl⁻ ions across the membrane due to concentration gradient

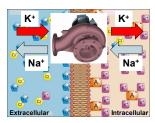
K-Na active pump


Because the amount of ions inside a cell is finite, this flow would change the concentrations and hence the GHK equilibrium

K-Na active pump


The GHK equilibrium remains stable, instead, because there are **active pumps** across membrane

K-Na active pump


A pump is a channel that actively pushes K⁺ ions inside the cell and Na⁺ ions outside the cell to maintain the original concentration gradient

K-Na active pump

A pump pushes 2 K^+ ions inside the cell for every 3 Na^+ ions removed from the cell

K-Na active pump

A pump pushes 2 K⁺ ions inside the cell for every 3 Na⁺ ions removed from the cell

- □ Pumps change the electric balance between inside and outside until the concentrations of Na⁺ and K⁺ reach the original value again
- ☐ Pumps consume metabolic energy to perform this task

Note this...

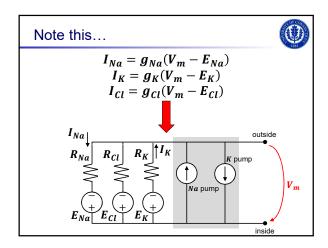
$$I_{Na} = g_{Na}(V_m - E_{Na})$$

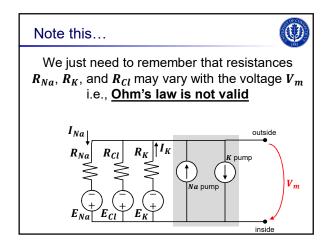
$$I_K = g_K(V_m - E_K)$$

$$I_{Cl} = g_{Cl}(V_m - E_{Cl})$$

$$\begin{aligned} V_m &= I_{Na}/g_{Na} + E_{Na} \\ V_m &= I_K/g_K + E_K \\ V_m &= I_{Cl}/g_{Cl} + E_{Cl} \end{aligned}$$

Note this...


 $I_{Na} = g_{Na}(V_m - E_{Na})$ $I_K = g_K(V_m - E_K)$ $I_{Cl} = g_{Cl}(V_m - E_{Cl})$


$$V_m = \underset{Na}{R_{Na}} I_{Na} + E_{Na}$$

$$V_m = \underset{R}{R_K} I_K + E_K$$

$$V_m = \underset{R}{R_{Cl}} I_{Cl} + E_{Cl}$$

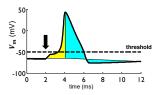
Note this	(
The cell's membrane can be represented as a circuit and can be analyzed with tools we have learned!			
$ \begin{array}{c c} I_{Na} \\ R_{Na} \\ R_{Cl} \\ R_{K} \uparrow I_{K} \\ R_{K} \downarrow I_{K} $	outside K pump V m		

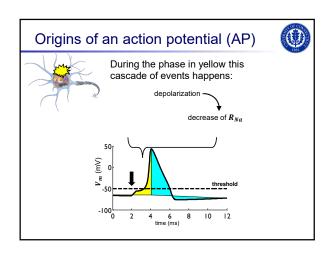
Origins of an action potential (AP) Now we have enough tools to understand how an action potential begins. Let us first introduce three technical words:

Origins of an action potential (AP)

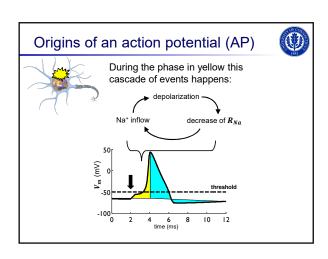
Now we have enough tools to understand how an action potential begins.

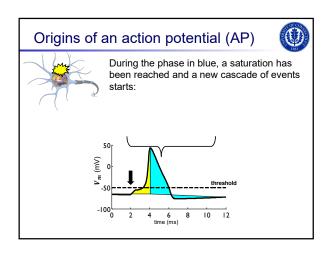
Let us first introduce three technical words:

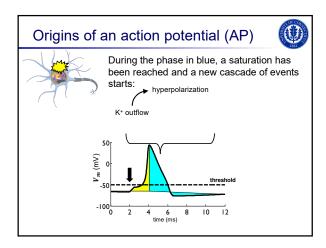

- ☐ Because it is more negative inside the cell than outside, the cell's membrane is said **polarized**
- □ <u>Depolarization:</u> lessening the magnitude of cell polarization by making inside the cell less negative
- ☐ <u>Hyperpolarization:</u> increasing the magnitude of cell polarization by making inside the cell more negative

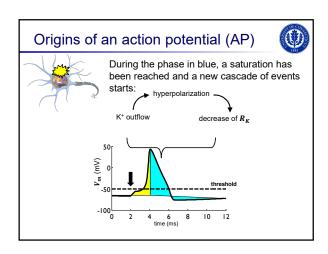

Origins of an action potential (AP)

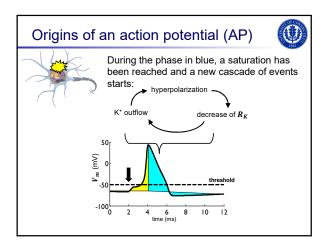


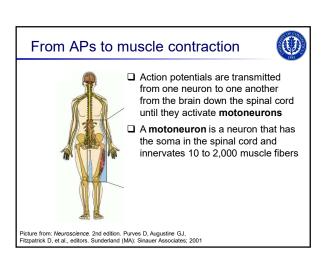


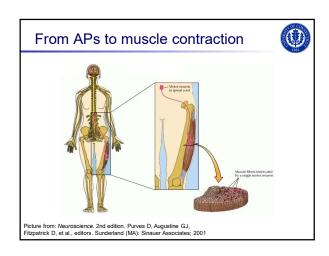

First, an action potential begins because chemical reactions occur at the dendrites and lead to a sudden increase of the voltage V_m across membrane

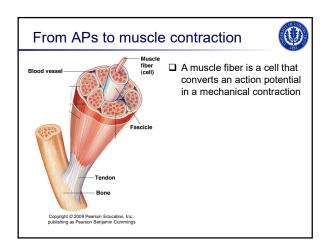


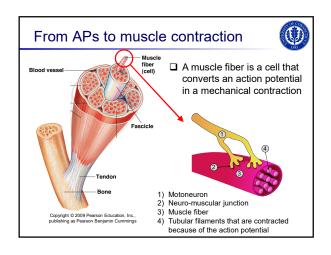




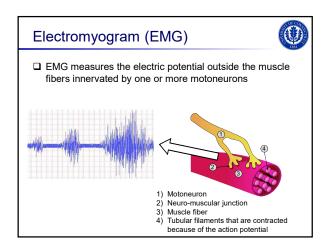


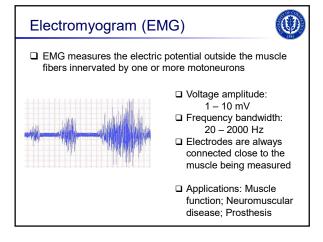






From APs to muscle contraction Action potentials are transmitted from one neuron to one another from the brain down the spinal cord until they activate motoneurons Picture from: Neuroscience. 2nd edition. Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001





Electromyogram (EMG) EMG measures the electric potential outside the muscle fibers innervated by one or more motoneurons 1) Motoneuron 2) Neuro-muscular junction 3) Muscle fiber 4) Tubular filaments that are contracted because of the action potential

