UCONN

Introduction to Medical Imaging Part I

ENGR 1166 Biomedical Engineering

What is "medical imaging"?

Technique and process of creating visual representations (images) of the interior of a body, i.e., of internal structures that are hidden by the skin and bones

What is "medical imaging"?

- Technique and process of creating visual representations (images) of the interior of a body, i.e., of internal structures that are hidden by the skin and bones
- It is used for sake of clinical analysis (e.g., to diagnose a disease) and medical intervention (e.g., to treat a disease)

What is "medical imaging"?

- Technique and process of creating visual representations (images) of the interior of a body, i.e., of internal structures that are hidden by the skin and bones
- It is used for sake of clinical analysis (e.g., to diagnose a disease) and medical intervention (e.g., to treat a disease)
- It is used to establish a database of normal anatomy and physiology to facilitate the identification of abnormalities

Goals of medical imaging

Depending on the specific goal, two types of medical imaging are possible:

Goals of medical imaging

Depending on the specific goal, two types of medical imaging are possible:

Functional Imaging

Imaging modalities

□ An Imaging Modality is the combination of type of probes and technologies used to acquire images of the body

Imaging modalities: signal

□ Modalities can be grouped according to the type of signal used to probe:

Signal	Imaging Modality
Electromagnetic waves	Radiography Thermography Computerized Tomography (CT) Magnetic Resonance Imaging (MRI) Positron Emission Tomography (PET) Single Deton Emission C (SECC)
Ultrasound waves	Doppler Echography Elastography

□ Modalities can also be grouped according to how the image is recreated:

Different imaging modalities produce images of different quality

How good is a medical image?

- Different imaging modalities produce images of different quality
- One aspect that affects the choice of one modality over the others is the required image quality

How good is a medical image?

- Different imaging modalities produce images of different quality
- One aspect that affects the choice of one modality over the others is the required image quality

So, how do we define the **<u>quality</u>** of a medical image?

Quality of a medical image

Three parameters define the quality of a medical image:

Three parameters define the quality of a medical image:

1) Contrast

Quality of a medical image

Three parameters define the quality of a medical image:

 Contrast ⇒ It is the difference between the intensity (or color) of the image and its surrounding

Three parameters define the quality of a medical image:

2) Resolution

Quality of a medical image

Three parameters define the quality of a medical image:

2) **Resolution** ⇒ It is the ability to resolve any two adjacent points of an image

Quality of a medical image Three parameters define the quality of a medical image: 2) Resolution ⇒ It is the ability to resolve any two adjacent points of an image It defines the amellest peecible dimensions

It defines the **smallest possible** dimensions of a point that can be detected

 \bigcirc

Three parameters define the quality of a medical image:

2) **Resolution** ⇒ It is the ability to resolve any two adjacent points of an image

Image A

Quality of a medical image

Three parameters define the quality of a medical image:

3) Signal-to-noise ratio (SNR)

10

Three parameters define the quality of a medical image:

3) Signal-to-noise ratio (SNR) ⇒ It is the ratio between the image signal and the noise from the instrument

Quality of a medical image

Three parameters define the quality of a medical image:

An estimation of the SNR is the ratio between the mean (μ_{sig}) and standard deviation (σ_{sig}) of the signal

$$SNR \cong rac{\mu_{signal}}{\sigma_{signal}}$$

Quality of a medical imageThree parameters define the quality of a
medical image:In general, the SNR is expressed in **decibels**
(dB), i.e., it is computed as:
$$SNR = 20 \log_{10} \left(\frac{\mu_{signal}}{\sigma_{signal}} \right) dB$$

Г

Image A

Quality of a medical image

OFCON

□ The quality of a medical image is largely affected by the type of signal used

□ The quality of a medical image is largely affected by the type of signal used

 \bigcirc

To understand what aspect of the signal is relevant, let us revise the notions of electromagnetic and ultrasound waves

Waves in medical imaging

Ultrasound waves

Waves that propagate via air and tissue molecules colliding with their neighbors

Waves in medical imaging

Electromagnetic waves

Waves that originate from the acceleration of charged particles and propagate at the speed of light

□ As a rule-of-thumb, if the wavelength of the probe signal increases...

