UCONN

Introduction to Medical Imaging Part II

ENGR 1166 Biomedical Engineering

Ultrasound imaging

- □ It exploits **ultrasound waves** (frequency: [1,10] MHz; wavelength: [0.1,1] mm)
- It operates in reflection mode, i.e., it measures the waves reflected by the tissue of interest

Ultrasound imaging

- It exploits ultrasound waves (frequency:
 - [1,10] MHz; wavelength: [0.1,1] mm)
- It operates in reflection mode, i.e., it measures the waves reflected by the tissue of interest

It does not require radiation exposure

 $\hfill\square$ It is used because

It is non-invasive and safe

It is fast and (relatively) inexpensive

Ultrasound imaging

Typical applications include fetus and heart monitoring, and screening for tumors

heart monitoring

detection of malignant breast tumors

<section-header><section-header><section-header><section-header><section-header><complex-block>

bouy lissue	Acoustic Impedance (10 ⁶ Rayls)
Lung	0.18
Fat	1.34
Liver	1.65
Blood	1.65
Kidney	1.63
Muscle	1.71
Bone	7.8

Exampl	e 2		0
	Body tissue	Acoustic Impedance (10 ⁶ Rayls)	
	Lung	0.18	
	Fat	1.34	
,	Liver	1.65	
	Blood	1.65	
	Kidney	1.63	
	Muscle	1.71	
	Bone	7.8	
R = 0	$.01 = \left(\frac{Z_{tu}}{Z_{fa}}\right)$	$\frac{mor - Z_{fat}}{t + Z_{tumor}} \right)^2 \Rightarrow Z_{tumor} = \frac{1}{0}.$ = 1.64 × 10 ⁶ Rayl	$\frac{1}{9}Z_{fat}$

Radiography

- □ It exploits electromagnetic waves (<u>X</u>-<u>rays</u>, wavelength: [0.1,1] nm*, frequency: 3x10¹⁶ Hz to 3x10¹⁹ Hz)
- It operates in transmission mode, i.e., it measures the waves that pass through the tissue of interest and reach a target

*nm ≝ 10⁻⁹ m

Radiography

- □ It exploits electromagnetic waves (<u>X-</u> <u>rays</u>, wavelength: [0.1,1] nm*, frequency: 3x10¹⁶ Hz to 3x10¹⁹ Hz)
- It operates in transmission mode, i.e., it measures the waves that pass through the tissue of interest and reach a target
- □ The target is a 2-D surface, i.e., the image is a **projection** of the tissue of interest

*nm ≝ 10⁻⁹ m

 \bigcirc

In practice...

Option 1 (passing through) happens more often when the tissue is made of atoms with a low number of protons (e.g., soft tissue, which is largely made of water)

In practice...

- Option 1 (passing through) happens more often when the tissue is made of atoms with a low number of protons (e.g., soft tissue, which is largely made of water)
- Option 2 (absorption) happens more often when the tissue is made of atoms with an high number of protons (e.g., calcium)

In practice...

- Option 1 (passing through) happens more often when the tissue is made of atoms with a low number of protons (e.g., soft tissue, which is largely made of water)
- Option 2 (absorption) happens more often when the tissue is made of atoms with an high number of protons (e.g., calcium)

That's why bones are so clearly identifiable in an X-ray image

Example 3

An X-ray with energy $I_{in} = 140$ keV passes through an apron made of lead ($a_m = 2.0$ cm²/g; $\rho = 11.3$ g/cm³) with $\Delta x = 0.1$ cm

How much is *I*_{out}?

Example 4

How much should Δx be to obtain R = 0.8?

