

Introduction to Computational Biology & Bioinformatics – Part II

ENGR 1166 Biomedical Engineering

In a single cell...

Genome: the complete genetic material of an organism, made of DNA and organized in linear molecules (chromosomes)

In a single cell...

- Genome: the complete genetic material of an organism, made of DNA and organized in linear molecules (chromosomes)
- Transcriptome: the complete collection of RNA molecules derived from the proteincoding genes

In a single cell...

- Genome: the complete genetic material of an organism, made of DNA and organized in linear molecules (chromosomes)
- Transcriptome: the complete collection of RNA molecules derived from the proteincoding genes
- Proteome: repertoire of proteins in the cell, i.e., it specifies the nature of the biochemical reactions that the cell is able to carry out

-				
Geno	me size compa	arison Chromosome:	s Genes	Base pairs
X	Human (Homo sapiens)	46 (23 pairs)	28-35,000	3.1 billion
	Mouse (Mus musculus)	40	22.5-30,000	2.7 billion
	Puffer fish (Fugu rubripes)	44	31,000	365 million
1	Malaria mosquito (Anopheles gambiae)	6	14,000	289 million
PP	Fruit fly (Drosophila melanogaster)	8	14,000	137 million
2	Roundworm (C. elegans)	12	19,000	97 million
-	Bacterium *	1	5,000	4.1 million

DNA sequencing

Biologists know how to access a DNA molecule but they need a way to precisely read the sequence of nucleotides (i.e., A, C, G, T) in it

DNA sequencing

- Biologists know how to access a DNA molecule but they need a way to precisely read the sequence of nucleotides (i.e., A, C, G, T) in it
- DNA sequencing is the combination of methods and technologies used to read and store the sequence of nucleotides in an entire strand of DNA <u>in the right order</u>

Method #1: Sanger sequencing	
Sanger Dideoxy DNA Sequencing	
- Template DNA - Primers - Dideoxynucleotides ddATP ddCTP ddTP	
source: http://www.youtube.com/watch?v=SRWvn1mUNMA	

Databases of biological data

Now that we can read a DNA strand, two questions occur:

- □ <u>Where</u> do we store the outcomes of the DNA sequencing?
- □ <u>What</u> do we do with the outcomes of the DNA sequencing?

Databases of biological data

□ <u>Where</u> do we store the outcomes of the DNA sequencing?

Databases of biological data

□ <u>Where</u> do we store the outcomes of the DNA sequencing?

Archival databases

Online databases that provide access to repositories of DNA sequences, amino acid sequences, and protein 3-D structures

Databases of biological data

Where do we store the outcomes of the DNA sequencing?

Archival databases

Online databases that provide access to repositories of DNA sequences, amino acid sequences, and protein 3-D structures Examples

- NCBI (National Center for Biotechnology Information): <u>http://www.ncbi.nlm.nih.gov</u>
- EMBL (European Molecular Biology Laboratory): <u>http://www.embl.org/</u>
- PDB (Protein Data Bank): <u>http://www.rcsb.org/</u>
- Full list: http://en.wikipedia.org/wiki/List_of_biological_databases

How to access an online databases

□ Let's assume that we want to retrieve the 3D structure of the protein **hexokinase**:

- o Go to http://www.rcsb.org/
- Search by molecule name (i.e., hexokinase)
- Select the structure from the organism in which you are interested
- View the 3D structure, download the atomic coordinates, etc.

How to access an online databases

- o Go to http://www.ncbi.nlm.nih.gov/
- $\circ~$ Select from the menu Resources \rightarrow Genomes & Maps \rightarrow Genome
- Search by organism (i.e., E. Coli)
- The entire genome sequence can be downloaded in a text file!

Databases of biological data

What do we do with the outcomes of the DNA sequencing?

Databases of biological data

What do we do with the outcomes of the DNA sequencing?

Data analysis

Algorithms are run on the archival data to retrieve relevant information on:

- **Sequence motifs** (i.e., finite length patterns in the DNA or protein sequences)
- Mutations and variations in the sequences
- **Common features** among different sequences

Databases of biological data

- Sometimes the results of the data analysis need to be stored, i.e., derived databases are created
- Both archival and derived databases must be well-structured and organized to allow for user-friendly searches and multiple types of queries

Examples of queries

(0)

- □ Given a DNA or protein sequence *S*^{*}, which sequences in the database are <u>similar</u> to *S*^{*}?
- □ Given a protein 3D structure *X*^{*}, which other proteins in the database have structure <u>similar</u> to *X*^{*}?

Examples of queries

For instance, these queries are relevant if:

- We have sequences from two different species and we want to know who is the last common ancestor
- We want to identify regions in a sequence that have been conserved (unchanged) throughout evolution
- We want to know what kind of structural and functional properties a certain protein has

What do we mean by "similar"?

What do we mean by "similar"?

- We need a **quantitative** definition of the term, so that a computer can answer our queries
- Unfortunately, it's not easy to give a definition, as DNA is constantly changing (mutations)
- Mutations constantly occur during the replication of a DNA strand
- □ Mutations are essential to evolution

Sequence alignment

Substitution

Insertion

Deletion

□ It is the arrangement (lining up) of DNA, RNA, or protein sequence such that regions of similarity can be identified

Sequence alignment

- It is the arrangement (lining up) of DNA, RNA, or protein sequence such that regions of similarity can be identified
- It can be **pairwise** (i.e., two sequences only) or **multiple-sequence** (i.e., three or more sequences are lined up)

Sequence alignment

 \bigcirc

- It is the arrangement (lining up) of DNA, RNA, or protein sequence such that regions of similarity can be identified
- It can be **pairwise** (i.e., two sequences only) or **multiple-sequence** (i.e., three or more sequences are lined up)
- It can be global (i.e., whole sequences are lined up) or local (i.e., only regions of the sequences are lined up)

An example

0

□ Suppose we had two protein sequences: WKAWD KAWWD How can we line them up, so they match?

Alignment gaps

Gaps allow us to line up sequences of **difference length** (it's useful to cope with insertion and deletion mutations)

Alignment gaps

- Gaps allow us to line up sequences of difference length (it's useful to cope with insertion and deletion mutations)
- □ Introducing gaps can help maximize the number of matching symbols (⇒ high similarity) but it makes the alignment more challenging (⇒ higher cost)

Alignment gaps

 \bigcirc

- Gaps allow us to line up sequences of difference length (it's useful to cope with insertion and deletion mutations)
- □ Introducing gaps can help maximize the number of matching symbols (⇒ high similarity) but it makes the alignment more challenging (⇒ higher cost)

How to address the trade-off?

Alignment score

- □ The solution to this trade-off is assigning a **score** to each alignment
- The score increases with the number of matching symbols and is penalized by the number of gaps
- □ The best alignment <u>maximizes</u> the score

How do we compute the score?

First, let us define a similarity score for two single elements in a sequence (i.e., two bases in a DNA strand or two amino acids in a protein)

How do we compute the score?

 \bigcirc

First, let us define a similarity score for two single elements in a sequence (i.e., two bases in a DNA strand or two amino acids in a protein)

For instance, we could define:

	A	с	G	т
Α	1	0	0	0.5
С	0	1	0.5	0
G	0	0.5	1	0
т	0.5	0	0	1

Ho	w d	o w	/e c	om	pute the score?
DS S e For i	Seco core ntrie nsta	ond, e th es i nce,	let at is n th we c	us a s the e su could	assign to our alignment a sum of the correspondent bstitution matrix have:
	A	с	G	т	alignment
Α	1	0	0	0.5	AGGT'CGAAT
с	0	1	0.5	0	ATCCGGAAT
G	0	0.5	1	0	
т	0.5	0	0	1	
	subn	nission	matrix	C	

	A	с	G	т	alignment
Α	1	0	0	0.5	AGGTCGAAT
с	0	1	0.5	0	ATCCGGAAT
G	0	0.5	1	0	224
т	0.5	0	0	1	Score: 1+0+0.5+0+0.5+1+1+1+1 = 6
	subn	nission	matrix	c	

A more complicated example	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~

A PAM-based alignme	ent score	
How similar is each seq using PAM-250, ass	uence to each oth uming no gaps?	er
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1) KAWSADV 33 KDWSAEV 33) KYW 1) KAWSADV 3) KYWSDDV Some 5-1417+2204444 = 20	ISDDV

Alignment score with gaps

- □ How do we assign a score to an alignment that includes gaps?
- How do we decide whether and where to insert a gap in an alignment to get the maximum score possible?

Alignment score with gaps

 \bigcirc

- □ How do we assign a score to an alignment that includes gaps?
- How do we decide whether and where to insert a gap in an alignment to get the maximum score possible?

We can use the Smith-Waterman algorithm

S-W algorithm

 \bigcirc

Let us align these two sequences: ACAC AGCA

S-W algorithm						
Let us align these two sequences:						
		ACAC	2	AGCA		
1) We	build a	a table				
,	-	A	с	A	с	
-	0	0	0	0	0	
A	0					
G	0					
с	0					
A	0					

S-W algorithm

2) We fill in the table recursively, starting at the top left and working our way down

	-	A	с	A	с	
-	0	0	0、	0	0	
A	0	2 -	→1	2 _	→ 1	
G	0					
с	0					
A	0					

₹ 2

a 0

2) We fill in the table recursively, starting at the top left and working our way down

	-	A	с	A	с	
-	0	0	0、	0	0	
A	0	2 -	→1	2 -	→ 1	
G	0	¥1 、	1	* 1	1	
с	0、	₩o	3			
A	0	A 2	↓ 2			

S-W algorithm

с

A

0

₹ 2

2) We fill in the table recursively, starting at the top left and working our way down

₹₂

▶ 4

4) Construct the alignment by following the arrows forward

	-	A	с	A	с
-	<u>o</u>	0	0、	0	0
A	0	2	→1	2 -	→ 1
G	0	<u>1</u>	1	* 1	1
с	0、	▼ 0	<u>3</u> —	▶ 2	A 3
A	0	A 2	★ 2	×5-	→ 4

S-W algorithm

- \bigcirc
- □ If you move **diagonally**, you align a symbol with a symbol
- □ If you move **horizontally**, you align the symbol in the column sequence with a gap
- □ If you move **vertically**, you align the symbol in the row sequence with a gap

Solution **NOTE:** The S-W algorithm finds an optimal local alignment and has left out two of the symbols (one per sequence) To have a complete alignment, in which all symbols are paired, you have to start at the lower right of the table and use exactly the same process Optimal local A-CA Score of the 11

AGCA

alignment:

alignment:

Complete alignment A с с A 0 0 0 0 0 _ 2 0 2 A ▶1 ▶ 1 ¥ 1 **†**1 × 1 G 0 1 ŧο 0 <u>3</u> · ▶ 2 ۲ ۲ с ₹ 2 ₹₂ A 0 5 Optimal local A-CAC Score of the 15 alignment: alignment: AGCA-

