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An intuition of “biopotentials”

Source: htp://www.youtube. 0C: s_main

Biopotentials

Q An electric voltage that is measured
between points in a living cell, tissue, or
organism, and which accompanies all
biochemical processes
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Soma: 0.01-0.05 mm (diameter)
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1 — 25 um (diameter)
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Biopotentials are due to the occurrence of one or
more electrical impulses (action potentials) at
the level of single cells
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An action potential stems from ions moving
across the membrane and travels down from the
soma to the axon and buttons
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Features of an action potential

all-or-none action

potentials
// threshold

time

voltage

Q Threshold

The net excitation that a excitable cell receives must exceed a
minimum intensity to generate an action potential

Q All-or-none response
An excitable cell responds to stimuli of increasing intensity by spiking
more, but strength and speed of action potentials remain the same

Q Intensity

The shape of an action potential does not change along the cell’s axon




lonic concentrations and channels

To understand the mechanisms of an

@ ;—-3 action potential let us first look at what
happens across the cell's membrane

lonic concentrations and channels

charge separation across
the cell membrane
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lonic concentrations and channels

Vi =Vin =V
Lo STV
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Q The inside of a cell is always more negative than
the outside

U The transmembrane voltage V,,, at rest is typically
between —100 mV and —60 mV




lonic concentrations and channels

Vip <0

o

4 Potassium (K*) ion concentration is 30-50 times
higher inside as compared to outside

U Across the membrane there are channels that let
pass potassium ions only (ion-specific channels)

lonic concentrations and channels
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Iy = ggk(Vim — Eg)

+
Ey 2 Eln K ot - Nernst equilibrium
K= %F [K*]in (channels are ion-specific)
Z £ jon valence R £ universal gas constant
F £ Faraday’s constant T £ temperature (in °K)

lonic concentrations and channels
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lonic concentrations and channels
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lonic concentrations and channels
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U There are other channels across the membrane
that let pass only sodium (Na*) or chloride (CI)
ions

U Because of the concentration gradient, the flow of
Na* and CI- ions is opposite to the flow of K* ions




lonic concentrations and channels
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Goldman-Hodgkin-Katz equilibrium
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If nothing perturbs the cell, the sum of the ionic
currents will eventually reaches zero (equilibrium).
This happens when V,, reaches the value

(pK[K+]uut + pNa[Na+]aut + Pc [Cl_]in>

vo_put
m= = In " " —
PilK* i + PyaNa* ]y, + g [C ]y,

F

Goldman-Hodgkin-Katz equilibrium

Vm=EdéfEln
F

(pK [K+]out + pNa[Na+]aut + Pa [Cr]in>
pK[K+]in + pNa[Na+]in + Pc [Cli]aut

U Eis called Goldman-Hodgkin-Katz (GHK)
equilibrium. It is approximately -85 mV

O pr Pra @nd p; are permeability coefficients
and account for the ability of the cell's membrane
to be crossed by potassium, sodium, and chloride
ions, respectively




K-Na active pump

The fact that Iy, + Iy + I¢; = 0 at GHK equilibrium
does not mean that each ionic current is zero
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K-Na active pump

There is still a flow of Na*, K*, and CI- ions across the
membrane due to concentration gradient
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K-Na active pump @

Because the amount of ions inside a cell is finite, this
flow would change the concentrations and hence the
GHK equilibrium
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K-Na active pump @

The GHK equilibrium remains stable, instead,
because there are active pumps across membrane

o

Extracellular | Intracellular

K-Na active pump @

A pump is a channel that actively pushes K* ions
inside the cell and Na* ions outside the cell to
maintain the original concentration gradient
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K-Na active pump

A pump pushes 2 K* ions inside the cell for every 3
Na* ions removed from the cell
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K-Na active pump

A pump pushes 2 K* ions inside the cell for every 3
Na* ions removed from the cell

!

U Pumps change the electric balance between
inside and outside until the concentrations of Na*
and K* reach the original value again

U Pumps consume metabolic energy to perform
this task

Note this...
Ing = gNa(Vm - ENa)
Iy = gk(Vin — Eg)
It =9ca(Vm —Ecp)
Vin = INu/gNa +Epyq
Vin =Ix/9x + Eg
Vin=Ici/gc1+ Ec
Note this...

Ing = gNa(Vm - ENa)
Iy = gk(Vin — Eg)
It =9ca(Vm —EcD)

Vin = Ryalna + Ena
Vm = RKIK + EK
Vin = Rcla+ Ec
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Note this...

Ing = gNa(Vm - ENa)
Iy = gk(Vin — Eg)
It =9c(Vim —EcD)

INal l outside
Rya| Rei| Rk IR K pump
Na pump Vm
Eng[ Ea [ Exk
inside
Note this...

The cell's membrane can be represented as
a circuit and can be analyzed with tools we
have learned!

1 N al outside

Rya| Rei| Rk IR K pump
Na pump Vm
Ena[ Ea T Ek

inside

Note this...

We just need to remember that resistances
Rya, Rk, and R¢; may vary with the voltage V,,,
i.e., Ohm’s law is not valid

I N al outside

RNa RCl RK TIK K pump
Na pump Vm
Ena[ Ea [ Exk

inside
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Origins of an action potential (AP)

)Y Now we have enough tools to understand
@ :--.3 how an action potential begins.

Let us first introduce three technical words:

Origins of an action potential (AP)

)Y : Now we have enough tools to understand
@ *’-3 how an action potential begins.

Let us first introduce three technical words:

UBecause it is more negative inside the cell than
outside, the cell's membrane is said polarized

UDepolarization: lessening the magnitude of cell
polarization by making inside the cell less negative

UHyperpolarization: increasing the magnitude of
cell polarization by making inside the cell more
negative

Origins of an action potential (AP)

chemical reactions occur at the dendrites
and lead to a sudden increase of the
voltage V,,, across membrane

$ First, an action potential begins because
= au‘»-.3

l threshold
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Origins of an action potential (AP)

] During the phase in yellow this
ﬁ cascade of events happens:
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Origins of an action potential (AP)

During the phase in yellow this
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Origins of an action potential (AP)
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Origins of an action potential (AP)

been reached and a new cascade of events
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Origins of an action potential (AP)
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Origins of an action potential (AP)
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From APs to muscle contraction

QO Action potentials are transmitted
from one neuron to one another
from the brain down the spinal cord
until they activate motoneurons

Picture from: Neuroscience. 2nd edition. Purves D, Augustine GJ,
Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001

From APs to muscle contraction

QO Action potentials are transmitted
from one neuron to one another
from the brain down the spinal cord
until they activate motoneurons

U A motoneuron is a neuron that has
the soma in the spinal cord and
innervates 10 to 2,000 muscle fibers

Picture from: Neuroscience. 2nd edition. Purves D, Augustine GJ,
Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001
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From APs to muscle contraction

) B

Picture from: Neuroscience. 2nd edition. Purves D, Augustine GJ,

Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001

From APs to muscle contraction

2—— Muscle

% (o 8 Amuscle fiber is a cell that
( converts an action potential
in a mechanical contraction

Blood vessel

Fascicle

Copyright © 2009 Pearson Education, Inc.,
publishing as Pearson Benjamin Cummings

From APs to muscle contraction

Muscle

oy & Amuscle fiber is a cell that
converts an action potential
in a mechanical contraction

Blood vessel

Fascicle

1) Motoneuron

2) Neuro-muscular junction

Copyright © 2009 Pearson Education, Inc., 3) Muscle fl!.)ef

publishing as Pearson Benjamin Cummings 4) Tubular filaments that are contracted
because of the action potential
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Electromyogram (EMG)

O EMG measures the electric potential outside the muscle
fibers innervated by one or more motoneurons

1) Motoneuron

2) Neuro-muscular junction

3) Muscle fiber

4) Tubular filaments that are contracted
because of the action potential

Electromyogram (EMG)

O EMG measures the electric potential outside the muscle
fibers innervated by one or more motoneurons

1) Motoneuron

2) Neuro-muscular junction

3) Muscle fiber

4) Tubular filaments that are contracted
because of the action potential

Electromyogram (EMG)

O EMG measures the electric potential outside the muscle
fibers innervated by one or more motoneurons

Q Voltage amplitude:
1-10mV
Q Frequency bandwidth:
20 - 2000 Hz
Q Electrodes are always
connected close to the
muscle being measured

Q Applications: Muscle
function; Neuromuscular
disease; Prosthesis
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